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Abstract

The main objective of this study is to clarify the effect of the outlet guide vane (OGV) on the acoustic treatment design in

aeroengine nacelle, which received less attention previously. A model of sound propagation through a lining section and a

blade row is developed to investigate the interaction between sound sources of blade rows and liners in a channel of parallel

walls containing uniform mean flow. The present method makes it possible to evaluate the performance of liner while a

blade row is inserted in the channel and the sound attenuation in a duct with both liner section and cascade. Various

numerical results show that the effect of the cascade may have diverse effects on sound attenuation of the liner under

different conditions, but the existence of the OGV always enhances the total sound attenuation in the duct due to energy

dissipation caused by vortex shedding from the tailing edge of the OGV. To pursue a better design of acoustic liner in

aeroengine nacelle, it is thus necessary to include the effect of OGV on the sound attenuation.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

With the development of high bypass ratio turbofan engines, the contribution of fan has played a very
important role in the overall noise of aircraft [1]. A lot of effort has been paid to noise suppressor design,
especially the design of acoustic treatment in aeroengine nacelle, as seen in Fig. 1. Generally, the acoustic liner
on nacelle can be partitioned into three sections. For the liner Section 2, the sound waves generated by
rotating fans propagate downstream through this liner section; on the other hand, the sound waves generated
by the OGV due to wake would propagate upstream through this section too. In the general methods to design
acoustic liners, such as the finite element method, numerical simulation methods based upon computational
aeroacoustics (CAA) technique and the mode-matching method, the sound source is always treated as a
strength-fixed source. However, for the case in Fig. 1, if one does not consider the effect of OGV on the sound
attenuation in the duct, the accuracy of the design of liners for noise reduction would be suspectable. To
author’s knowledge, there is few work available in current literature to investigate this problem. The difficulty
lies in how to describe the interaction between the sound sources and acoustic liners. This is in fact a quite
complicated problem. Therefore, in order to get more insight into the mechanism related to the interactions,
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

b blade semichord
c0 sound speed
G Green’s function in the duct
h height from the hub side to the tip side

in the transformed space
h1 stagger distance, measured parallel to

chord
h2 gap distance, measured normal to chord
k0 wavenumber
kn wavenumber in z-direction
km,n radial wavenumber of mode (m,n)
m spinning mode order
n radial mode order
p acoustic pressure
p̄ amplitude of perturbation pressure
v̄ upwash velocity of the reference blade
pd disturbance acoustic pressure
pi acoustic pressure of incident sound wave
~r vector coordinate
~r0 vector coordinate denotes the mass

source singularities
t time in an observer point
vb normal vibration velocity of blade
x; y; z an orthogonal coordinate system for an

observer
x0; y0; z0 an orthogonal coordinate system for an

source
x0; y0; z0 a duct-fixed coordinate system
H height from the hub to the tip side

K kernel function
l axial length of liner reduced by blade

chord
Mr Mach number in chordwise direction
Ur mean velocity in chordwise direction
U mean velocity in x0-direction
V mean velocity in y0-direction

Greek letters

a wavenumber in x-direction
b wavenumber in Z-direction
y blade stagger angle
L0 eigenfunction normalizing factor
d( � ) Dirac Delta function
g�m;n axial wavenumber of mode (m,n) for

liner section
Fm;nðy; zÞ eigenfunction of a hard duct
F�m;nðy; zÞ conjugate form of Fm,n(y,z)
s interblade phase angle
r0 mean density
r0 acoustic density
t time associated with emission of sound

wave; time delay
m radial mode number for incident sound

wave
o angular frequency reduced by c0/H
o0 dimensionless characteristic angular fre-

quency of the facing sheet
ob perturbation frequency of blade force
Dp̄ amplitude of pressure difference

X. Sun et al. / Journal of Sound and Vibration 302 (2007) 287–312288
we will discuss a simplified model shown in Fig. 2. It is obvious that the key to study the interaction is to set up
a model, which includes the effect of a blade row on the acoustic treatment design.

It is noted that there are many investigations that focus on either the sound attenuation through a duct with
acoustically lined wall or the sound propagation through a blade row. In fact, the problem of wave
propagation in ducts with acoustically lined wall has been studied in a lot of previous work. Effects of wall
admittance changes on duct transmission and radiation of sound has been investigated by Lansing and
Zorumski [2] and Unruh [3] by use of mode-matching matrix technique; and Koch [4] explored sound
attenuation in multielement acoustically lined rectangular ducts by use of Wiener–Hopf technique. Namba
and Fukushige [5] presented the method of singularity for analysis of the acoustic field in a partially lined duct,
which is applicable to non-uniform lined wall in the stream-wise and/or circumferential direction. Besides
these methods, the finite element method has been suggested to calculate the sound propagation in lined flow
ducts by Eversman [6], and the numerical simulation method based on CAA technique [7,8] has been
developed for the prediction of the sound propagation and radiation from a lined duct.

On the other hand, the propagation of sound waves through a blade row has been investigated by Kaji and
Okazaki [9] based on the semi-actuator disk theory, meanwhile Kaji and Okazaki [10] suggested a more
sophisticated and exact acceleration potential method. A good agreement with each other for small blade
spacing is given in their works. Then the semi-actuator disk model was applied to sound transmission
calculations including three-dimensional incident sound field and multiple blade rows in turbomachinery by
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Fig. 1. A schematic of aeroengine Nacelle.
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Muir [11,12]. Using the Wiener–Hopf technique, Koch [13] obtained more accurate results of the reflection
and transmission problems. Amiet and Sears [14] used the method of matched asymptotic expansions, in
which the blade force was calculated by using quasi-steady Prandtl–Glauert theory. Whitehead [15] developed
a calculation method applicable to the transmission and reflection problems, and to the generation of sound
waves by vibration and incoming flow disturbances, based upon the work of Lane and Friedman [16]. All the
methods are in good agreement with the results of Kaji and Okasaki [10].

However, it is noted that the current design models for a duct acoustic liner are based on a strength-fixed
sound source without including the effect of the liner reaction to the sound source. For practical
application, liners and blade rows often work in the same duct simultaneously. It is essential to consider
effect of the interaction between liner and blade sound source in the preliminary design for aeroengine
noise control. Therefore, the main purpose of this study is to clarify how a blade sound source interacts with a
liner section, and investigate the possibility to design an optimum combination of acoustic liners and
the OGV.



ARTICLE IN PRESS
X. Sun et al. / Journal of Sound and Vibration 302 (2007) 287–312290
In the present work, an acoustic model of cascade airfoils in a three-dimensional subsonic flow field is
presented, in which the blade row and liner section are treated as independent elements, respectively. For the
liner section, the spinning mode eigenfunction expansions is still used here to obtain the solution of sound field
in the duct, while the effect of lining wall is modeled by series of monopole sources suggested by Namba and
Fukushige [5], which effectively avoids solving a complicated complex eigenvalue problem. For the blade row
section, each blade is treated as an unsteady distribution of pressure doublets, which is suggested to calculate
the amplitude of sound waves by Kaji and Okazaki. Given a known input upwash perturbation [17,18], an
upwash integral equation for the unknown doublet distribution function can be derived by use of the
condition that there must be no net upwash at the surface. Considering the eigenfunction still meet the
orthogonal condition in the present case, a solution is constructed for a given lined duct element or blade row
element with arbitrary axial length and position, which has the interface parameters as unknown variables.
With this special mathematical treatment, a solution for an infinite-length duct has been extended to that for a
finite-length duct element no mater what sound source is, dipoles like a blade row or monopoles like an
acoustic liner. It is found that it is particularly useful to construct such an element solution to make full use of
the existing mode-match technique [19]. The present model is thus powerful in describing the effect of
reflective sound waves on blades under the soft wall condition and is capable of giving the physical
interpretation to the interaction between lined wall and blades. Various numerical results are presented to
show the effects of wall impedance on sound propagation through a blade row, and the effects of the blade
row on sound propagation through the finite-length lined wall section.
2. Formulation of the problem

2.1. Analytical model and basic solutions

The following analysis is based upon the assumption of a compressible, inviscid, thermally non-conducting
fluid, three-dimensional system with subsonic uniform flow parallel to the blades, which are flat plates of
negligible thickness, and with small perturbations superimposed. In addition, the Kutta–Joukowski condition
for unsteady flow is satisfied at the trailing edge, and the lower plate (hub side) and upper plate (tip side) as
shown in Fig. 2 are assumed rigid. The uniformly moving medium wave equation is

r2p�
1

c20

D2
0p

Dt2
¼ �gð~r0; tÞ, (1)

where gð~r0; tÞ represents the source distribution. According to the generalized Green’s function theory [20] the
equation can be written as

r2G �
1

c20

D2
0

Dt2
G ¼ �dðt� tÞdð r

*
� r
*0
Þ. (2)

The corresponding boundary condition is assumed to satisfy

qG

qn
¼ 0 if ~r0 on the tip or hub side of the duct. (3)

If we consider a moving source with a volume of u(t), surface area of s(t) and a velocity of V, Goldstein [20]
has shown

r0ðx
*
; tÞ ¼

1

c20

Z T

�T

Z
uðtÞ

q2G
qyiqyj

T 0ij d y
*

dt

þ
1

c20

Z T

�T

Z
sðtÞ

qG

qyi

f i dsðy
*
Þdtþ

1

c20

Z T

�T

Z
sðtÞ

r0V
0
n

D0G

Dt
dsðy

*
Þdt, ð4Þ

where T0ij denotes a volume quadrupole source, fi denotes a dipole source, r0V0n denotes a monopole noise
source.
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In the model as Fig. 2 shows, the liner is considered as a series of monopole sources, and the blade row is
treated as a series of dipole sources or doublets. The effect of quadrupoles is assumed to be neglected in the
present model (Fig. 3).
2.2. Formulation for the blade row section

As shown in Fig. 4, a cross-section is also assumed both on the left side and on the right side of
the blade row, and then we get a separate element for analysis. To the blade row section, Goldstein [20]
y ′y

x

x ′0

Ut = Ωrm

d

Ur

Ut
U∞ m=-1

m=1

m=0

�

m=-2

�

Fig. 3. Coordinate for one blade row.
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Fig. 4. The blade row section model in an infinite duct.
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has shown that

pðx
*
; tÞ ¼

Z T

�T

dt
Z

A

G
q
qn
þ

V n

a2
0

D0

Dt

� �
pðy
*
; tÞ

�

�pðy
*
; tÞ

q
qn
þ

Vn

a2
0

D0

Dt

� �
Gðy

*
; t x

*
; t

��� Þ

�
dSðy

*
Þ. ð5Þ

With the same boundary condition as Eq. (3) described, Sun and Kaji [17] has shown that the outgoing-
wave solution may be written as

p̄ðx; Z; zÞ ¼ �
br

4pb2h

Z
A

Z þ1
�1

Dpðx0; z0Þ
X1
n¼1

cos knz cos knz0
L0

�

�
Xq¼1

q¼�1

sgnðZ� qh2brÞe
iqs�iða�kbMrÞ½x�ðx0þqh1Þ��i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

b�a
2�k2

n

p
Z�qh2brj j

#
dadS, ð6Þ

where Dpðx0; z0; tÞ is pressure difference between the lower and upper surface of a blade, q is the blade number,
and for expedience the term correlative with time in the function is omitted. The coordinate transforms x ¼ x/
b, Z ¼ ybr/b, z ¼ zbr/b are introduced here. And where

kb ¼
obb

a0b
2
r

, (7)

br ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

r

q
, (8)

kn ¼
pðn� 1Þ

h
¼

pðn� 1Þb

Hbr

; n ¼ 1; 2; 3; . . . , (9)

L0 ¼
1 n ¼ 1;

0:5 na1:

(
(10)

2.2.1. The upwash integral equation

By letting Z-0, the corresponding upwash integral equation for the pressure across the 0th blade in terms
of the known upwash velocity for the zeroth stator blade can therefore be written as

v̄ðx; 0; zÞ
Ur

¼

Z 1

0

Z 1

�1

f ðx0; z0ÞK0ðx� x0; z z0
�� Þdx0 dz0, (11)

where
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r0U2
r

, (12)
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Dþ

0
@

1
A
3
775da, ð13Þ

D� ¼ ðGþ h1aÞ þ h2brb
�, (14)

Dþ ¼ ðGþ h1aÞ þ h2brb
þ, (15)
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G ¼ s� kbMrh1. (16)

As the integrand in Eq. (13) possesses only poles at av ¼ Kb/Mr and at the points where D7 ¼ 2mp for
m ¼ 0,71,72,y. It follows from Eqs. (14) and (15) that the points are determined by

a�m;n ¼ �
Gmh1

d2
�

brh2

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

b � k2
n �

Gm

d

� �2
s

, (17)

where
Gm ¼ G� 2mp ðm ¼ 0;�1;�2; . . . ; Þ, (18)

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
1 þ h2

2b
2
r

q
. (19)

Due to different a, the kernel function will be different. Hence, for the downstream pressure wave
(x�x0)40, the kernel function is

K0ðx� x0; z z0
�� Þ ¼ b2r h2

2d2

Xþ1
m¼�1

Xþ1
n¼1

cos knz cos knz0
L0

�
ðk2

b � aþ2m;n � k2
nÞe
�iðaþm;n�kbMrÞðx�x0Þ

ðaþm;n þ Gmh1=d2
Þðaþm;n � kb=MrÞ

þ
br

2

Xþ1
n¼1

cos knvz cos knvz0
Lv

�
bv sinðh2brbvÞe

�iðb2r Kb=MrÞðx�x0Þ

cosðh2brbvÞ � cosðGþ avh1Þ
, ð20Þ

where av, bv are the wavenumber of vortex wave propagating downstream, i.e.

an ¼
kb

Mr

, (21)

bv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

b � a2v � k2
nv

q
. (22)

For the upstream pressure wave (x�x0)o0, the kernel function is

K0ðx� x0; z z0
�� Þ ¼ � b2r h2

2d2

Xþ1
m¼�1

Xþ1
n¼1

cos knz cos knz0
L0

�
ðk2

b � a�2m � k2
qÞe
�iða�m�kbMrÞðx�x0Þ

ða�m;n þ Gmh1=d2
Þða�m;n � kb=MrÞ

. ð23Þ

2.2.2. The outgoing acoustic wave

By letting Z-0, the corresponding outgoing acoustic wave solution for the pressure across the 0th blade in
terms of the known force f ðx0; z0Þ on the blade face may be written as

poutðx; Z; zÞ ¼
Z 1

0

Z 1

�1

f ðx0; z0ÞKpðx� x0; Z; z z0
�� Þdx0 dz0, (24)

where

Kpðx� x0; Z; z z0
�� Þ ¼ � r0U

2
r

4p

Z þ1
�1

Xþ1
n¼1

cos knz cos knz0e�iða�kbMrÞðx�x0Þ

L0

�
1

2i

ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

b�a
2�k2

n

p
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i
2D�

sin 1
2
D�

þ
e�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

b�a
2�k2

n

p
Ze

i
2Dþ

sin 1
2
Dþ

" #
da. ð25Þ
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For the downstream pressure wave (x�x0)40, the kernel function is

Kþp ðx� x0; Z; z z0
�� Þ ¼ r0U2

rb
2
r h2

2d2

Xþ1
m¼�1

Xþ1
n¼1

cos knz cos knz0
L0

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

b � aþ2m;n � k2
n

q� 	
e
�iðaþm�kbMrÞðx�x0Þ�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

b�a
þ2
m;n�k2

q

p
Z

ðaþm;n þ Gmh1=d2
Þ

. ð26Þ

For the upstream pressure wave (x�x0)o0, the kernel function is

K�p ðx� x0; Z; z z0
�� Þ ¼ � r0U2

rb
2
r h2

2d2

Xþ1
m¼�1

Xþ1
n¼1

cos knz cos knz0
L0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

b � a�2m;n � k2
n

q
e�iða

�
m;n�kbMrÞðx�x0Þþi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

b�a
�2
m;n�k2

q

p
Z

ða�m;n þ Gmh1=d2
Þ

. ð27Þ

2.2.3. A solution in a finite domain for the blade row

The above solution only exists for an infinitely long duct. So, we try to solve the sound field for a finite domain
from x ¼ �l1 to l2 as shown in Fig. 4. It is noted that the acoustic pressure p in the domain can be regarded as a
sum of an undisturbed incident acoustic pressure component pi and a disturbance pressure component pd, i.e.

p ¼ pi þ pd . (28)

For simplicity, in most of the computational models, the incident acoustic wave pi is usually treated as a
single mode coming from one direction, which interacts directly with the scattering object. However,
superposition principle for a liner system states that a linear combination of solution to a linear equation is
again a solution of the linear system, so, we can directly consider the incident waves interacting with the blade
row shown in Fig. 4 with the following expression:

pi ¼ pA þ pB ¼
XN

m¼1

Am cosðkmzÞe�ib
þ
m;mZ�iða

þ
m;m�kbMrÞðxþL1Þ

h
þBm cosðkmzÞe�ib

�
m;mZ�iða

�
m;m�kbMrÞðx�L2Þ

i
, ð29Þ

where

b� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

b � a2 � k2
m

q
. (30)

Using momentum equation and Eq. (29) one can obtain expressions for the acoustic fluid velocity of sub-
incident waves, the Z component of which is given by

v0iðx; Z; zÞ ¼ �
br

r0Ur

e
�i

kbb
2
r

Mr

x
Z x

�1

qpi

qZ
e
i
kbb

2
r

Mr

x0

dx0

¼
Xþ1
m¼1

�Ambrb
þ
m;m cosðkmzÞe�ib

þ
m;mZ�iða

þ
m;m�kbMrÞðxþL1Þ

r0Ur aþm;m �
kb

Mr

� �
0
BB@

þ
�Bmbrb

�
m;m cosðkmzÞe�ib

�
m;mZ�iða

�
m;m�kbMrÞðx�L2Þ

r0Ur a�m;m �
kb

Mr

� �
1
CCA. ð31Þ
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As there must be no net upwash at the blade surface [9], the perturbation velocity of blade may be given by

vb ¼ v0i. (32)

Substituting Eq. (31) into the integral Eq. (11), the integral equation can be reduced to a set of algebraic
equation for the unknown f Am

ðx0; z0Þ and f Bm
ðx0; z0Þ, which are defined as modal pressure coefficient related to

Eq. (12). Then using the outgoing wave equation (24), the outgoing acoustic wave pressure pout can be
obtained as

poutðx; Z; zÞ ¼
Z 1

0

Z 1

�1

X1
m¼1

Amf Am
ðx0; z0Þ þ Bmf Bm

ðx0; z0Þ

 !

� Kpðx� x0; Z; z z0
�� Þdx0 dz0. ð33Þ

By letting [18]

z0j ¼
j

M0
; j ¼ 0; 1; 2; . . . ;M0 � 1, (34)

c0k ¼
kp
N0

; k ¼ 1; 2; . . . ;N0, (35)

x0k ¼ cos c0k. (36)

Eq. (33) can be expressed as

pout ¼
Xþ1
n¼1

ð�b�m;nÞ cos knze�iða
�
m;n�kbMrÞxþib

�
m;nZ

L0 a�m;n þ
Gmh1

d2

� � ðAmF
Am
n� þ BmF

Bm
n�Þ, (37)

where

F
Am
n� ¼

�brh2p

2d2
ðM0 �N0Þ

XM0�1

j¼0

XN0

k¼1

f Am
ðx0k; z0jÞ

 !
cos knz0je

iða�m;n�kbMrÞx0k , (38)

F
Bm
n� ¼

�brh2p

2d2
ðM0 �N0Þ

XM0�1

j¼0

XN0

k¼1

f Bm
ðx0k; z0jÞ

 !
cos knz0je

iða�m;n�kbMrÞx0k . (39)

For matching with other elements appropriately, as seen in Fig. 3, a transform of coordinate is used here,
i.e.

x0 ¼ xb cos y�
Zb

br

sin y;

y0 ¼
Zb

br

cos yþ xb sin y;

z0 ¼
Bb

br

:

8>>>>>>><
>>>>>>>:

(40)

By transforming the coordinate system, one obtains the wavenumber a,b

a0�m;n ¼ �
brb
�
m;n sin y

b
þ
ða�m;n � kbMrÞ cos y

b
, (41)

b0�m ¼
brb
�
m;n cos y

b
þ
ða�m;n � kbMrÞ sin y

b
. (42)
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Using the same treatment as mentioned above, the x0 component acoustic fluid velocity of disturbance
pressure at the cross-section is given by

uðx; y; zÞ ¼ �a0�m;npout=r0ðoþUa0�m;n þ Vb0�mÞ. (43)

As a specific example, we can use the present method to construct a close matrix equation to obtain the
solution for an infinitely long duct described in Fig. 4. In this case, an incident wave pH impinges upon the
cascade from the downstream. In fact, with the interface x ¼ �l1 or l2 as a relative coordinate, the sound
propagation in a different direction can be described as

pA ¼
XN

n¼1

An cosðknzÞe�ib
0þ

m;ny0�ia0þm;nðx
0þl1Þ, (44)

pB ¼
XN

n¼1

Bn cosðknzÞe�ib
0�

m;ny0�ia0�m;nðx
0�l2Þ, (45)

pC ¼
XN

n¼1

Cn cosðknzÞe�ib
0�

m;ny0�ia0�m;nðx
0þl1Þ, (46)

pD ¼
XN

n¼1

Dn cosðknzÞe�ib
0þ

m;ny0�ia0þm;nðx
0�l2Þ, (47)

pH ¼
XN

n¼1

Hn cosðknzÞe�ib
0�

m;ny0�ia0�m;nðx
0�l2Þ. (48)

All these waves are composed of modal components that can be specified by the notation ðm; nÞ. In addition,
the known source pH is assumed to be located at x ¼+N, and only cut-on modes are considered. On the
other hand, once the unknown coefficients pA; pB; pC ; pD (n ¼ 1; 2; 3; . . . ;N) are determined, the corresponding
acoustic field in the duct can be obtained through Eqs. (44)–(48). Eqs. (37) and (44)–(48) imply that, to
describe the sound field in the duct, 4N unknown coefficients ðAn;Bn;Cn;DnÞ have to be determined.
According to the pressure and axial velocity continuity conditions on the cross-section C–C and D–D

p�C ¼ pþC ; u�C ¼ uþC ,

p�D ¼ pþD; u�D ¼ uþD. ð49Þ

Using the orthogonality of eigenfunctions, one can obtain 4N algebraic equations for the unknown
coefficients. The set of equations is reduced into

ss1C ss1A ss1B 0

ss2C ss2A ss2B 0

0 ss3A ss3B ss3D

0 ss4A ss4B ss4D

8>>>><
>>>>:

9>>>>=
>>>>;

pC

pA

pB

pD

0
BBBB@

1
CCCCA ¼

0

0

pH

uH

0
BBB@

1
CCCA, (50)

where each ss denotes a coefficients matrix, for example,

ss1A ¼

�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

2
6664

3
7775þ

�csA1

1� �csA2

1� � � � �csAN

1�

�csA1

2� �csA2

2� � � � �csAN

2�

..

. ..
. . .

. ..
.

�csA1

N� �csA2

N� � � � �csAN

N�

2
666664

3
777775, (51)
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where

csAm
n� ¼

ð�b�m;nÞe
�ia0�m;nx0�ib0�my0

L0 a�m;n þ
Gmh1

d2

� � F Am
n�, (52)

pH ¼ fH1;H2; � � � ;Hng
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{N

, (53)

uH ¼
a0�m;1H1

r0ðoþUa0�m;1 þ Vb0�m;1Þ
;

a0�m;2H2

r0ðoþUa0�m;2 þ Vb0�m;2Þ
; � � �

a�m;nHn

r0ðoþUa�m;n þ Vb�m;nÞ

( )zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N

. (54)

And {ss1A}N�N represents a matrix related to the sound wave pA defined in Eq. (44). Therefore, for each
section, the corresponding matrix can be described as

ss1A ss1B

ss2A ss2B

ss3A ss3B

ss4A ss4B

8>>>><
>>>>:

9>>>>=
>>>>;
. (55)

Up to now, we have derived the solution in a finite domain with the unknown variables on the interfaces.
For simplicity, the solution consisting of Eqs. (28), (29), (37) and the corresponding matrix expression defined
in Eq. (55) is called as a ‘‘transfer element’’. For convenience in the following discussions, we call what is
suggested in this investigation as ‘‘transfer element method’’ (shorten by TEM).

2.3. Formulation for the acoustic lining section

As is shown in Fig. 5, a duct of arbitrary uniform cross-section is considered here, in which a uniform mean
flow is contained. The incident waves interacting with the liner is similar as that of the blade row section with
Acoustic liner

Z

x

H

PB

PC

Pd

PD

PA

C

C

l
D

D

M

y

PG

Fig. 5. The liner section model in an infinite duct.
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the following expression:

pi ¼ pC þ pD ¼
XN

m¼1

CmFm;mðy; zÞe
igþmmx þDmFm;mðy; zÞe

ig�mmðx�lÞ
h i

, (56)

where Cm and Dm are unknown coefficients, and

Fm;nðy; zÞ ¼
ffiffiffiffi
�n

p
cos np

z

H

� 	
, (57)

�n ¼
1 n ¼ 0;

2 na0;

(
(58)

g�m;n ¼
Mk0

b2a
þ

kn;m

b2a
ðupstreamÞ;

gþm;n ¼
Mk0

b2a
�

kn;m

b2a
ðdownstreamÞ;

8>>><
>>>: (59)

kn;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0 � b2ak2

m;n

q
k2
04b2ak2

m;n;

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ak2

m;n � k2
0

q
k2
0ob2ak2

m;n;

8><
>: (60)

b2a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
, (61)

where km,n denotes the eigenvalue due to the condition of solid wall.
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On the other hand, from Eq. (4), the solution for the monopole source in this section will be eventually
expressed as

pd ¼
XN

n¼1

pdnFm;nðy; zÞ ¼
r0
2

XN

n¼1

Fm;nðy; zÞe
ig�m;nx

Gm;n

X1
m¼1

CmQ
Cm
n� þDmQ

Dm
n�

h i( )
, (62)

where

Q
Cm
n� ¼ Fm;mðy; zÞ

X1
k¼1

X1
j¼1

<�1jk;m;Bm
I

Cm
j Sn�

k , (63)

Q
Dm
n� ¼ Fm;mðy; zÞ

X1
k¼1

X1
j¼1

<�1jk;m;Cm
I

Dm
j Sn�

k , (64)
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Sn�
k ¼

Z
s

F�m;nðy0; z0Þ
½oþUg�m;n�

kn;m
e�ig

�
m;nx0 1þ

U

io
q
qx0

� �
sin

kpx0

l
dsð r

*
0Þ, (65)

Gm;n ¼ h, (66)

ðzjk þ djkZÞ�1 ¼ <�1jk , (67)

I j ¼
2

l

Z l

0

XN

m¼1

CmFm;me
igþm;mx þDmFm;me

ig�m;mðx�lÞ
h i

sin
jpx

l
dx

¼
XN

m¼1

Fm;mðy; zÞ CmI
Cm
j þDmI

Dm
j

h i
, ð68Þ

zjk ¼
r0
l

X1
m¼�1

X1
n¼1

Fm;nðy; zÞ

Gm;nZ l

0

Z
sðtÞ

½oþUg�m;n�

kn;m
F�m;nðy0; z0Þe

ig�m;nðx�x0Þ 1þ
U

io
q
qx0

� �
sin

kpx0

l
dsð~r0Þ sin

jpx

l
dx. ð69Þ

All the incident waves, reflective waves and scattering waves are composed of modal components that can
also be specified by the notation (m, n). To describe the sound field in the duct, 4N unknown coefficients
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(Am,Bm,Cm,Dm) have to be determined. Due to the pressure and axial velocity continuity condition
on the cross-section A–A and B–B as mentioned in the blade row section, using the orthogonality of
eigenfunction, one can also obtain 4N algebraic equations for the unknown coefficients. The set of equations is
reduced to

ss1A ss1C ss1D 0

ss2A ss2C ss2D 0

0 ss3C ss3D ss3B

0 ss4C ss4D ss4B

8>>>><
>>>>:

9>>>>=
>>>>;

pA

pC

pD

pB

0
BBBB@

1
CCCCA ¼

pG

uG

0

0

0
BBB@

1
CCCA, (70)

where each ss denotes a coefficients matrix, for example,

ss1c ¼

�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

2
6664

3
7775þ

�csC1

1� �csC2

1� � � � �csCN

1�

�csC1

2� �csC2

2� � � � �csCN

2�

..

. ..
. . .

. ..
.

�csC1

N� �csC2

N� � � � �csCN

N�

2
666664

3
777775, (71)

where cs
Cm
n� ¼ ðr0=2Þðe

ig�m;nx=Gm;nÞQ
Cm
n�, and

pG ¼ �G1;�G2; . . . ;�Gnf g
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N

, (72)
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Fig. 12. (a) Modal spectra of the sound attenuation of the liner for the (1,1) mode incident from downstream side; (b) effect of a cascade

on the sound attenuation of the liner; (c) modal spectra of the sound attenuation of the combination of the liner and the cascade; (d) the

comparison of the total sound attenuation in (a)–(c), –&– total sound attenuation of case (a), –� – total sound attenuation of case (b),

–J– total sound attenuation of case (c). Mr ¼ 0.4, l ¼ 4.339, s/c ¼ 1.0, (1,0), (1,1) and (1,2) in (a)–(c) represent the cut-on modes

corresponding to the given frequency.
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uG ¼ �
gþm;1G1

oþUgþm;1
;�

gþm;2G2

oþUgþm;2
; � � � �

gþm;nGn

oþUgþm;n

( )zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N

. (73)

And {ss1C}N�N represents a matrix related to the sound wave pC defined in Eq. (56). Therefore for each
section, the corresponding matrix can be described as

ss1C ss1D

ss2C ss2D

ss3C ss3D

ss4C ss4D

8>>>><
>>>>:

9>>>>=
>>>>;
. (74)
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Fig. 13. (a) Modal spectra of the sound attenuation of the liner for the (1,0) mode incident from upstream side at high Mach number. (b)

Effect of a cascade on the sound attenuation of the liner. (c) Modal spectra of the sound attenuation of the combination of the liner and

the cascade. (d) The comparison of the total sound attenuation in (a)–(c), –&– total sound attenuation of case (a), –� – total sound

attenuation of case (b), –J– total sound attenuation of case (c). Mr ¼ 0.8, l ¼ 4.339, s/c ¼ 1.0, (1,0), (1,1) and (1,2) in (a)–(c) represent the

cut-on modes corresponding to the given frequency.
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Again, we have derived the solution in a finite domain with the unknown variables on the interfaces.
Therefore, the ‘‘transfer element’’ of lined wall section is constructed.

2.4. The combination of the two sections

As shown in Fig. 2, the liner section and blade row section are combined into a new model. The solution for
this new model can be obtained by combining the two transfer elements, and then establishing the relation
between the transfer elements by imposing suitable conditions on the surface of each element. Using the TEM
one can eventually obtain 6N algebraic equations for the 6N unknown coefficients (Am,Bm,Cm,Dm,Em,Fm). The
known pi or vi will be included the right vector for a set of equations. Compared to the mode-matching method
[19], the transfer element constructed here avoids calculating the difficult complex eigenvalues and the need to
assume that the wall impedance is piecewise uniform. Moreover, the eigenfunctions still satisfy orthogonality,
which means there is good convergence theoretically.
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3. Numerical results and discussion

3.1. Comparison with the previous numerical results

In the present model in Fig. 2, when the value of wall impedance tends to be infinite, the model can be
reduced to a blade row section model in Fig. 4. One of the theoretical results in the present analysis is the
transmission and reflection coefficient. For comparison with Kaji and Okazaki [10], the three-dimensional
equations can be reduced by letting radial wavenumber kn ¼ 0. And the result of solving three-dimensional
integral equation for a hard wall will be the same as the two-dimensional model if the transmission and
reflection coefficients are defined as

rp ¼ pF=pH , (75)

tp ¼ pE=pH . (76)

According to the above definition the correctness of the calculation method and program have been checked
by comparison with the results of Kaji and Okazaki [10]. In the course of present study it is confirmed that the
present method applied to the same conditions as used in Kaji and Okazaki’s calculations gives results
identical to theirs, as is seen in Fig. 6.

For checking the lined section, if the pressure differences between the lower and upper surface of blades are
forced to be zero, the model can be reduced to a lined section model in Fig. 5. For comparison with Namba
and Fukushige [5], the impedance model of the liner used in this paper is the same as the one used by Ko [21].
As is given by

Z ¼ Rð1þ io=o0Þ � i cotðodÞ, (77)

where R and o0 are the specific acoustic resistance and dimensionless characteristic angular frequency of the
facing sheet, respectively, and d is the dimensionless depth of the honeycomb cavities.

One of the theoretical results in the present analysis is the sound power attenuation. In the course of present
study it was confirmed that the present prediction gives a good agreement with Namba’s calculations [5].
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Fig. 15. (a) Modal spectra of the sound attenuation of the liner in Fig. 14 for the (1,0) mode incident from upstream side. (b) Effect of a

cascade on the sound attenuation of the liner. (c) Modal spectra of the sound attenuation of the combination of the liner and the cascade.

(d) The comparison of the total sound attenuation in (a)–(c), –&– total sound attenuation of case (a), –� – total sound attenuation of case

(b), –J– total sound attenuation of case (c). Mr ¼ 0.4, l ¼ 4.339, s/c ¼ 1.0, (1,0), (1,1) and (1,2) in (a)–(c) represent the cut-on modes

corresponding to the given frequency.
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A case is given in Fig. 7 when the incident wave is the fundamental (0,0) mode and there is no mean flow. For
the same incident wave, Fig. 8 shows the comparison with Namba’s results under different Mach number
mean flow. As seen in Figs. 7 and 8, the agreement with each other is very good.

3.2. Numerical results for a combination of a blade row and liner sections

The effects of a blade row on sound propagation through a liner section and the real sound attenuation of
the combination of the blade row and liner sections are investigated by using transfer element method for the
three-dimensional flow filed. For all the examples calculated in this paper below, some parameters are set by
the fixed value, such as h/c ¼ 0.5, R ¼ 1.5, d ¼ 0.271, o0 ¼ 25.86, s ¼ 0, y ¼ 01, and the dimensionless length
l1 ¼ l2 ¼ 1.0001.
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3.2.1. Effect of a blade row on the sound attenuation of an upstream liner

The first example, shown in Fig. 2, is the sound propagation through a blade row and a liner section in the
upstream side. Fig. 9 shows the numerical results of the sound power attenuation in the duct with the liner
section only, the effect of the cascade on the sound attenuation of the liner, the real sound attenuation of the
combination of the both sections, and the comparison of the total sound attenuation in the three cases for the
(1,0) mode incident from upstream side. As is seen from Fig. 9(b) that the blade row has very little influence on
the sound attenuation of the liner section. One point worth noting is that the effect of the blade row itself on
the sound attenuation of the liner can be seen clearly when the reduced frequency is 2.89, on which the
difference approaches 3.4 dB as shown in Fig. 9(d). But for most other frequencies, the differences are
unidentifiable. However, the curve of the case with both the cascade and the liner deviates strikingly from that
of the case with the liner only, as is seen from Fig. 9(d). For the range of reduced frequencies from 3.02 to 3.64,
the differences of the sound attenuation between each other have exceeded 10 dB. And for most of the
range, the differences are over 3 dB. This actually means that the insert of the cascade results in a positive
effect on the sound attenuation for all the range of reduced frequencies.

Although the above example only presents a very little effect of the cascade on the sound attenuation of the
liner, in some cases, for instance, when s/c ¼ 0.9 or 1.1, the blade row has in fact a considerable effect on the
performance of the liner. Fig. 10 (s/c ¼ 0.9) has shown that the cascade, as a secondary source, strengthened
the sound attenuation of the liner distinctively for the range of reduced frequency from 3.2 to 4.1. Especially
for the reduced frequency of 3.2, the augment of sound attenuation has approached 23 dB. In contrast, for the
case s/c ¼ 1.1, Fig. 11 shows that the cascade weaken the sound attenuation of the liner obviously for the
range of reduced frequency from 2.89 to 3.9. Especially for the reduced frequency of 2.89, the decrease of
sound attenuation has approached 18 dB. But for most other high frequencies, the effect of the cascade
becomes unidentifiable.

When the (1,1) mode sound wave impinges upon the cascade from downstream, the sound attenuation
decreases distinctively compared to the (1,0) mode incidence. The blade row also has a very little effect on the
sound attenuation of the liner section, which is shown in Fig. 12(b). As similar as the case in Fig. 9, in a certain
range of reduced frequencies from 5.47 to 8.14 in Fig. 12(d), the insert of blade row strengthens the total sound
attenuation in the duct obviously. And for the whole range of reduced frequencies, it shows a considerable
increase on the sound attenuation in the duct.
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Fig. 17. (a) Modal spectra of the sound attenuation of the two lined wall section in Fig. 14 without cascade for the (1,0) mode incident

from upstream side. (b) Modal spectra of the sound attenuation of the combination of the liners and the cascade. (c) The comparison of

the total sound attenuation in (a) (b), –&– total sound attenuation of case (a), –J– total sound attenuation of case (b). Mr ¼ 0.4,

l ¼ 4.339, s/c ¼ 1.0, (1,0), (1,1) and (1,2) in (a)–(c) represent the cut-on modes corresponding to the given frequency.
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Fig. 13 shows the numerical results for the mode (1,0) incident at high Mach number. With the increase of
flow Mach number, the sound attenuation is weakened in the duct. And it presents an obvious fluctuation on
the curves of the total sound attenuation seen in Fig. 13(d).

3.2.2. Effect of a blade row on the sound attenuation of a downstream liner

The second example (see Fig. 14) is the sound propagation through a cascade and a liner section in the
downstream side. The numerical results in Fig. 15 for the (1,0) mode incident from upstream side show the
similar trend as the case discussed above. For the whole range of reduced frequencies, the combination of the
cascade and the liner section in the downstream side also brings out a considerable increase on the sound
attenuation in the duct. And it should be noted that the difference between the sound attenuation of this sort
of combination (the liner in the downstream side) and that of the combination mentioned above (see Fig. 2) is
imperceptible. In other words, the effect of the position of liner (in the upstream side or downstream side) on
the sound attenuation in the duct is not significant for the case discussed in this paper.
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3.2.3. Effect of a blade row on the sound attenuation of two liner sections

The third example, shown in Fig. 16 is the combination of a blade row and two lined wall sections in the
upstream and downstream side of the blade row, respectively. In order to compare with the results of previous
examples, the length of the liner in this example is set by a half of that in the previous examples. For the (1,0)
mode incident from upstream side, Figs. 17(a) and (b) show the sound attenuation of the two liner sections in
the duct without cascade and that of the combination of cascade and liner sections, respectively. As shown in
Fig. 17(c), the combination of the cascade and the two liner sections also has a positive effect on the sound
attenuation for almost the whole range of cut-on frequencies.

In all the three examples when s/c ¼ 1.0, the same conclusion that the insert of cascade always results in a
positive effect on the sound attenuation in the duct with acoustic treatment could be achieved. The numerical
results shown in these examples may be physically explained by the mechanism of vortex sound interaction
[22,23], which tell us that the existence of a Kutta condition at the edge of a rigid surface in a flow causes the
shedding of fluctuating vorticity if the flow is slightly unsteady, and the this process can extract energy from
the sound field to form vortex which will be dissipated in flow fields. The Kutta condition is used in the present
investigation, therefore, the energy dissipation caused by the vortex shedding at the edge of OGV enhances the
sound attenuation in the duct with lined walls.

In order to further investigate the influence of OGV on the sound attenuation in the duct, the effect of
space-chord ratio on sound propagation is studied in this paper. Numerical results in Fig. 18 show that by
varying the space-chord ratio to a comparative low value one can obtain a considerable increase of sound
attenuation without any change of liner section. In fact, the increase comes from two parts of contribution due
to different mechanisms. On the one hand, with the variation of the space-chord ratio, the effect of OGV
acting as the secondary source becomes more considerable on the sound attenuation of the liner. On the other
hand, a certain benefit is derived from the vortex shedding of the OGV.
3.2.4. Effect of wake-blade row interactions on the liner sound attenuation

The last point worth considering is the power attenuation of sound propagation due to the wake from
upstream. A convected sinusoidal wake perturbation including an upwash velocity of the reference blade gives

wðx; tÞ ¼ �w̄eiðot�ilxÞ, (78)
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where w̄ represents the amplitude of upwash velocity, and the frequency parameter l is given by

l ¼ 2ob=Ur. (79)

In the present paper, the amplitude of upwash velocity is assumed to be equal to 1.0 at each Mach number.
Figs. 19(a) and (b) show the sound attenuation of the liner section in the upstream side and downstream side,
respectively, for the wake incident mentioned above. It has been shown that the peak points of power
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attenuation at different Mach numbers appears on different frequencies due to the cut-off condition
in the duct. For the liner section in the upstream side, when the Mach number is 0.4, the peak value
of power attenuation has approached 51.72 dB on the reduced frequency of 2.88. However, it should
be noted that the curves are very steep especially at high Mach number. When the reduced frequency is
changed to 3.51 at a comparative high Mach number 0.4, only 10.375 dB can be achieved for this case.
Even on some high frequencies, the liner has no effect on the sound attenuation at high Mach number
with the given parameters in this example. The curves for the liner in the downstream side have the similar
trend as that for the liner in the upstream side, but the value of the sound attenuation for the high Mach
number is a little bit lower.

4. Conclusions

A model of sound propagation through a lining section and a blade row is developed to investigate the
interaction between sound sources of blade rows and liners in a channel of parallel walls containing uniform
mean flow. The present method makes it possible to evaluate the real sound attenuation in the duct with lined
wall and cascades. Various numerical results show that the effect of the cascade may have diverse effects on
sound attenuation of the liner under different conditions, but the existence of the OGV always enhances the
total sound attenuation in the duct due to the energy dissipation caused by vortex shedding from the tailing
edge of the OGV. To pursue a better design of acoustic liner in aeroengine nacelle, it is thus necessary to
include the effect of OGV on the sound attenuation.
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